Préparation d'une solution ionique

Première S

9 *janvier* 2018

1. Analyse de l'étiquette d'un flacon

a. Le chlorure de fer a tendance a absorber l'eau. La formule FeCl₃, 6 H₂O indique qu'une molécule de chlorure de fer (III) est entourée de 6 molécules d'eau.

b.
$$M(eau) = 18,0 \text{ g.mol}^{-1}$$

M(chlorure de Fer hexahydraté) = $6 \times 18 + 55.8 + 3 \times 35.5$

 $M(chlorure de Fer hexahydraté) = 270,3 g.mol^{-1}$.

c. Le chlorure de fer solide est corrosif et nocif.

2. Concentrations des ions en solution

a.
$$\operatorname{FeCl}_3(s) \to \operatorname{Fe}^{3+}(aq) + 3\operatorname{Cl}^-(aq)$$

b.

FeCl ₃	Fe ³⁺	CI ⁻
FeCl ₃ -	ightarrow Fe ³⁺ -	+ 3 CI ⁻
n(FeCl ₃)	0	0
n(FeCl ₃) - x	X	3 x
0	x _{max}	3 x _{max}

$$x_{max} = n(FeCl_3)$$

2. Concentration des ions en solution

Les concentrations molaires effectives des ions fer(III) et des ions chlorure présents dans la solution dans la solution sont notées respectivement [Fe³⁺] et [Cl⁻].

C.

$$C(S) = \frac{n(S)}{V_{sol}}$$

d.

$$[Fe^{3+}] = \frac{n(Fe^{3+})}{V_{sol}} = \frac{n(FeCl_3)}{V_{sol}}$$

$$[Cl^-] = \frac{n(Cl^-)}{V_{sol}} = \frac{3n(FeCl_3)}{V_{sol}}$$

2. Concentration des ions en solution

On en déduit la concentration molaire des ions Fe³⁺ et Cl⁻

e.

$$[Fe^{3+}] = C(S)$$

$$[Cl^-] = 3 \times C(S)$$

3. Protocole expérimental

a. On utilise les relations donnant la quantité de matière en fonction de la masse et la définition de la concentration molaire :

$$n = \frac{m}{M}$$
 et $c = \frac{n}{V}$

On obtient alors

$$m = M \times n$$
 et $n = c \times V$

D'où

$$m = M \times C \times V = 270,3 \times 0,040 \times 100,0.10^{-3} = 1,08g$$

3. Protocole expérimental

b.

- On pèse, dans une coupelle, avec précision, la masse de solide m = C \times V \times M = 1,08 g
- On introduit le solide dans une fiole jaugée de 100 mL à l'aide d'un entonnoir. On récupère l'eau de rinçage de l'entonnoir et du sabot de pesée dans la fiole.
- On emplit la fiole à moitié avec de l'eau distillée, on bouche et on agite jusqu'à dissolution complète du solide.
- On complète la fiole avec de l'eau distillée jusqu'au trait de jauge.
- On bouche puis on agite pour homogénéiser la solution.